Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.745
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38564127

RESUMO

Microbial nitrate reduction processes involve two competing pathways: denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA). This study investigated the distribution of DNRA in a sole sulfur-driven nitrogen conversion process using a laboratory-scale sequencing biofilm batch reactor (SBBR) through a series of batch tests with varying sulfide/nitrate (S/N) ratios. The results showed that DNRA became more dominant in the sulfide-oxidizing autotrophic denitrification (SOAD) process as the S/N ratio increased to 1.5:1, 1.7:1, and 2:1, reaching a peak of 35.3% at the S/N ratio of 1.5:1. Oxidation-reduction potential (ORP) patterns demonstrated distinct inflection points for nitrate and nitrite consumption under the SOAD-only conditions, whereas these points overlapped when DNRA coexisted with SOAD. Analysis of 16S ribosomal RNA identified Ignavibacterium, Hydrogenophaga, and Geobacter as the dominant genera responsible for DNRA during autotrophic nitrate reduction. The findings of the DNRA divergence investigation provided valuable insights into enhancing biological nitrogen removal processes, particularly when coupled with the anammox.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38598157

RESUMO

An in situ integrated system, consisting of ecological floating islands (EFI), ecological riverbeds (ER), and ecological filter dams (EFD), was built in a ditch only receiving the effluent of sewage plant; the effect of in situ technologies on the distribution of aquatic pathogen was investigated. The results showed the aquatic pathogen decreased along the ditch. Specifically, the relative abundance of Legionella, Aeromonas, and Acinetobacter decreased from 0.032, 0.035, and 0.26 to 0.026%, 0.012%, and 0.08%, respectively. Sedimentation, filtration, and sorption (provided by plant roots and biofilms on substrates) were principal processes for the removal. The nitrogen removal bacteria to prevent the potential risk of eutrophication were also evaluated. The EFI and ER were the dominant sites for Nitrosomonas (34.96%, 32.84%) and Nitrospira (35.74%, 54.73%) enrichment, while EFI and EFD facilitated the enrichment of denitrification bacteria. Notably, the relative abundance of endogenous denitrifiers (DNB-en) (including Dechloromonas at 9.72%, Thermomonas at 0.58%, and Saccharibacteria at 2.55%) exceeded those of exogenous denitrifiers (DNB-ex) (Thauera at 0.20%, Staphylococcus at 0.005%, and Rhodobacter at 0.27%). This study demonstrated that the in situ integrated system was effective in reducing the abundance of pathogens in the drainage channel, and the deficiency of DNB-ex and carbon sources made nitrate removal difficult.

3.
ISME Commun ; 4(1): ycae020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38584645

RESUMO

The two evolutionarily unrelated nitric oxide-producing nitrite reductases, NirK and NirS, are best known for their redundant role in denitrification. They are also often found in organisms that do not perform denitrification. To assess the functional roles of the two enzymes and to address the sequence and structural variation within each, we reconstructed robust phylogenies of both proteins with sequences recovered from 6973 isolate and metagenome-assembled genomes and identified 32 well-supported clades of structurally distinct protein lineages. We then inferred the potential niche of each clade by considering other functional genes of the organisms carrying them as well as the relative abundances of each nir gene in 4082 environmental metagenomes across diverse aquatic, terrestrial, host-associated, and engineered biomes. We demonstrate that Nir phylogenies recapitulate ecology distinctly from the corresponding organismal phylogeny. While some clades of the nitrite reductase were equally prevalent across biomes, others had more restricted ranges. Nitrifiers make up a sizeable proportion of the nitrite-reducing community, especially for NirK in marine waters and dry soils. Furthermore, the two reductases showed distinct associations with genes involved in oxidizing and reducing other compounds, indicating that the NirS and NirK activities may be linked to different elemental cycles. Accordingly, the relative abundance and diversity of NirS versus NirK vary between biomes. Our results show the divergent ecological roles NirK and NirS-encoding organisms may play in the environment and provide a phylogenetic framework to distinguish the traits associated with organisms encoding the different lineages of nitrite reductases.

4.
Bioresour Technol ; 401: 130713, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641305

RESUMO

The mainstream anaerobic ammonium oxidation (anammox) faces considerable challenges with low-strength municipal wastewater. A Fe(Ⅱ)-amended partial denitrification coupled anammox (PD/A) process was conducted and achieved a long-term and efficient nitrogen and phosphorus removal, yielding effluent total nitrogen and phosphorus concentrations of 1.97 ± 1.03 mg/L and 0.23 ± 0.13 mg/L, respectively, which could well meet more stringent effluent discharge standard of some wastewater treatment plants in specific geographical locations, e.g., estuaries. Fe(Ⅱ)-driven vivianite formation provided key nucleuses for the optimization of the spatial distribution of heterotrophic and anammox bacteria with enhanced extracellular polymeric substances as key driving forces. Metagenomics analysis further revealed the increase of key genes, enhancing anammox bacteria homeostasis, which also bolstered the resistance to environmental perturbations. This study provided a comprehensive sight into the function of Fe(Ⅱ) in mainstream PD/A process, and explored a promising alternative for synergetic nitrogen and phosphorus removal for low-strength municipal wastewater treatment.

5.
Bioresour Technol ; 400: 130699, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615966

RESUMO

Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.

6.
Water Environ Res ; 96(4): e11017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565318

RESUMO

This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Amônia , Desnitrificação , Metanol , Glicerol , Nitritos , Projetos Piloto , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio , Oxirredução
7.
Water Res ; 256: 121565, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581985

RESUMO

Nitrogen (N) concentrations in many lakes have decreased substantially in recent years due to external load reduction to mitigate harmful algal blooms. However, little attention has been paid to the linkage between the lakes' nitrogen removal efficiency and improved water quality in lakes, especially the variation of denitrification rate (DNR) under decreasing N concentrations. To understand the efficiency of N removal under improving water quality and its influence on the N control targets in Lake Taihu, a denitrification model based on in situ experimental results was developed and long-term (from 2007 to 2022) water quality and meteorological observations were used to estimate DNR and relate it to the amount of N removal (ANR) from the lake. The concentration of total nitrogen (TN) in Lake Taihu decreased from 3.28 mg L-1 to 1.41 mg L-1 from 2007 to 2022 but the reduction showed spatial heterogeneity. The annual mean DNR decreased from 45.6 µmol m-2 h-1 to 4.2 µmol m-2 h-1, and ANR decreased from 11.85×103 t yr-1 to 1.17×103 t yr-1 during the study years. N budget analysis suggested that the amount of N removed by denitrification accounted for 23.3 % of the external load in 2007, but decreased to only 4.0 % in 2022. Thus, the contribution of N removal by internal N cycling decreased significantly as water quality improved. Notably, the proportion of ANR in winter to total ANR increased from 14 % in 2007 to 23 % in 2022 due to warming. This could potentially lead to N deficiencies in spring and summer, thus limiting the availability of N to phytoplankton. A TN concentration of less than 1.0 mg L-1 in the lake and 1.5 mg L-1 in the inflowing lake zones in spring contribute to local N-limitation in Lake Taihu for cyanobacteria control. Our study revealed a general pattern that N removal efficiency decreases with improved water quality, which is instructive for eutrophic lakes in nitrogen management.

8.
Environ Res ; 252(Pt 1): 118881, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582430

RESUMO

Nitrate reduction in bio-electrochemical systems (BESs) has attracted wide attention due to its low sludge yields and cost-efficiency advantages. However, the high resistance of traditional electrodes is considered to limit the denitrification performance of BESs. Herein, a new graphene/polypyrrole (rGO/PPy) modified electrode is fabricated via one-step electrodeposition and used as cathode in BES for improving nitrate removal from wastewater. The formation and morphological results support the successful formation of rGO/PPy nanohybrids and confirm the part covalent bonding of Py into GO honeycomb lattices to form a three-dimensional cross-linked spatial structure. The electrochemical tests indicate that the rGO/PPy electrode outperforms the unmodified electrode due to the 3.9-fold increase in electrochemical active surface area and 6.9-fold decrease in the charge transfer resistance (Rct). Batch denitrification activity tests demonstrate that the BES equipped with modified rGO/PPy biocathode could not only achieve the full denitrification efficiency of 100% with energy recovery (15.9 × 10-2 ± 0.14 A/m2), but also favor microbial attach and growth with improved biocompatible surface. This work provides a feasible electrochemical route to fabricate and design a high-performance bioelectrode to enhance denitrification in BESs.

9.
J Hazard Mater ; 471: 134354, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38653134

RESUMO

Excessive discharge of nitrogen-containing chemical products into the natural water environment leads to the serious environmental problem of nitrate-nitrogen pollution, threatening the ecological balance and human health. In this study, we propose an efficient denitrification electrochemical method utilizing iron-doped zeolite imidazolium framework derived defective nitrogen-doped carbon (d-FeNC) catalysts. The d-FeNC catalyst exhibited 97 % nitrate removal efficiency and 94 % total nitrogen (TN) removal, and the reaction rate constant was increased from 0.73 h-1 of the Fe-undoped electrocatalyst (d-NC) to 1.11 h-1. The successful synthesis of d-FeNC with carbon defect sites and encapsulated Fe was confirmed by in-depth characterization. In situ electron paramagnetic resonance (EPR) analysis in conjunction with cyclic voltammetry (CV) tests confirmed the carbon substrates with defect enhanced the trapping of atomic hydrogen (H*) on the catalyst surface. Density functional theory (DFT) calculations clarified the doping of Fe facilitated the adsorption of nitrate, resulting in contact of H* with nitrate on the catalyst surface. In the synergy of the defective state organic framework and metal Fe, H* and nitrate realized a collision process. The electrochemical denitrification system achieved an excellent nitrate removal capacity of 7587 mgN·g-1cat in high-concentration nitrate solution and showed excellent stability under various conditions. Overall, this study underscores the potential of defective iron-doped carbon catalysts for efficient electrocatalytic denitrification, providing a promising approach for sustainable wastewater treatment.

10.
Bioresour Technol ; 401: 130688, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604298

RESUMO

Nitrate is a common contaminant in high-salinity wastewater, which has adverse effects on both the environment and human health. However, conventional biological treatment exhibits poor denitrification performance due to the high-salinity shock. In this study, an innovative approach using an electrostimulating microbial reactor (EMR) was explored to address this challenge. With a low-voltage input of 1.2 V, the EMR reached nitrate removal kinetic parameter (kNO3-N) of 0.0166-0.0808 h-1 under high-salinities (1.5 %-6.5 %), which was higher than that of the microbial reactor (MR) (0.0125-0.0478 h-1). The mechanisms analysis revealed that low-voltage significantly enhanced microbial salt-in strategy and promoted the secretion of extracellular polymeric substances. Halotolerant denitrification microorganisms (Pseudomonas and Nitratireductor) were also enriched in EMR. Moreover, the EMR achieved a NO3-N removal efficiency of 73.64 % in treating high-salinity wastewater (salinity 4.69 %) over 18-cycles, whereas the MR only reached 54.67 %. In summary, this study offers an innovative solution for denitrification of high-salinity wastewater.

11.
Environ Res ; 252(Pt 2): 118943, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631471

RESUMO

Biogenic manganese oxides (BioMnOx) have attracted considerable attention as active oxidants, adsorbents, and catalysts. However, characteristics and mechanisms of nitrification-denitrification in biological redox reactions mediated by different concentrations of BioMnOx are still unclear. Fate of nutrients (e.g., NH4+-N, TP, NO3--N) and COD were investigated through different concentrations of BioMnOx produced by Mn(II) in the moving bed biofilm reactor (MBBR). 34% and 89.2%, 37.8% and 89.8%, 57.3% and 88.9%, and 62.1% and 90.4% of TN and COD by MBBR were synchronously removed in four phases, respectively. The result suggested that Mn(II) significantly improved the performance of simultaneous nitrification and denitrification (SND) and TP removal based on manganese (Mn) redox cycling. Characteristics of glutathione peroxidase (GSH-Px), reactive oxygen species (ROS), and electron transfer system activity (ETSA) were discussed, demonstrating that ROS accumulation reduced the ETSA and GSH-Px activities when Mn(II) concentration increased. Extracellular polymeric substance (EPS) function and metabolic pathway of Mn(II) were explored. Furthermore, effect of cellular components on denitrification was evaluated including BioMnOx performances, indicating that Mn(II) promoted the non-enzymatic action of cell fragments. Finally, mechanism of nitrification and denitrification, denitrifying phosphorus and Mn removal was further elucidated through X-ray photoelectron spectroscopy (XPS), high throughput sequencing, and fourier transform infrared reflection (FTIR). This results can bringing new vision for controlling nutrient pollution in redox process of Mn(II).

12.
J Environ Manage ; 358: 120912, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636417

RESUMO

With the enhancement of environmental governance regulations, the discharge requirements for reverse osmosis wastewater have become increasingly stringent. This study proposes an innovative approach utilizing heterotrophic nitrification and aerobic denitrification (HNAD)-based biomineralization technology, combined with coconut palm silk loaded biochar, to offer a novel solution for resource-efficient and eco-friendly treatment of reverse osmosis wastewater. Zobellella denitrificans sp. LX16 were loaded onto modified coir silk and showed removal efficiencies of up to 97.38, 94.58, 86.24, and 100% for NH4+-N (65 mg L-1), COD (900 mg L-1), Ca2+ (180 mg L-1), and Cd2+ (25 mg L-1). Analysis of the metabolites of microorganisms reveals that coconut palm silk loaded with deciduous biochar (BCPS) not only exerts a protective effect on microorganisms, but also enhances their growth, metabolism, and electron transfer capabilities. Characterization of precipitation phenomena elucidated the mechanism of Cd2+ removal via ion exchange, precipitation, and adsorption. Employing high-throughput and KEGG functional analyses has confirmed the biota environmental response strategies and the identification of key genes like HNAD.

13.
Water Res ; 256: 121600, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38640563

RESUMO

A limited understanding of microbial interactions and community assembly mechanisms in constructed wetlands (CWs), particularly with different substrates, has hampered the establishment of ecological connections between micro-level interactions and macro-level wetland performance. In this study, CWs with distinct substrates (zeolite, CW_A; manganese ore, CW_B) were constructed to investigate the nutrient removal efficiency, microbial interactions, metabolic mechanisms, and ecological assembly for treating rural sewage with a low carbon-to-nitrogen ratio. CW_B showed higher removal of ammonia nitrogen and total nitrogen by about 1.75-6.75 % and 3.42-5.18 %, respectively, compared to CW_A. Candidatus_Competibacter (denitrifying glycogen-accumulating bacteria) was the dominant microbial genus in CW_A, whereas unclassified_f_Blastocatellaceae (involved in carbon and nitrogen transformation) dominated in CW_B. The null model revealed that stochastic processes (drift) dominated community assembly in both CWs; however, deterministic selection accounted for a higher proportion in CW_B. Compared to those in CW_A, the interactions between microbes in CW_B were more complex, with more key microbes involved in carbon, nitrogen, and phosphorus conversion; the synergistic cooperation of functional bacteria facilitated simultaneous nitrification-denitrification. Manganese ores favour biofilm formation, increase the activity of the electron transport system, and enhance ammonia oxidation and nitrate reduction. These results elucidated the ecological patterns exhibited by microbes under different substrate conditions thereby contributing to our understanding of how substrates shape distinct microcosms in CW systems. This study provides valuable insights for guiding the future construction and management of CWs.

14.
Water Res ; 256: 121569, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38615604

RESUMO

Halogenated aromatic compounds possess bidirectional effects on denitrifying bio-electron behavior, providing electrons and potentially interfering with electron consumption. This study selected the typical 4-chlorophenol (4-CP, 0-100 mg/L) to explore its impact mechanism on glucose-supported denitrification. When COD(glucose)/COD(4-CP)=28.70-3.59, glucose metabolism remained the dominant electron supply process, although its removal efficiency decreased to 73.84-49.66 %. When COD(glucose)/COD(4-CP)=2.39-1.43, 4-CP changed microbial carbon metabolism priority by inhibiting the abundance of glucose metabolizing enzymes, gradually replacing glucose as the dominant electron donor. Moreover, 5-100 mg/L 4-CP reduced adenosine triphosphate (ATP) by 15.52-24.67 % and increased reactive oxygen species (ROS) by 31.13-63.47 %, causing severe lipid peroxidation, thus inhibiting the utilization efficiency of glucose. Activated by glucose, 4-CP dechlorination had stronger electron consumption ability than NO2--N reduction (NO3--N > 4-CP > NO2--N), combined with the decreased nirS and nirK genes abundance, resulting in NO2--N accumulation. Compared with the blank group (0 mg/L 4-CP), 5-40 mg/L and 60-100 mg/L 4-CP reduced the secretion of cytochrome c and flavin adenine dinucleotides (FAD), respectively, further decreasing the electron transfer activity of denitrification system. Micropruina, a genus that participated in denitrification based on glucose, was gradually replaced by Candidatus_Microthrix, a genus that possessed 4-CP degradation and denitrification functions after introducing 60-100 mg/L 4-CP.

15.
Chemosphere ; : 141954, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615964

RESUMO

Aerobic denitrification has emerged as a promising and efficient method for nitrogen removal from wastewater. However, the direct application of aerobic denitrifying bacteria has faced challenges such as low nitrogen removal efficiency, bacterial loss, and poor stability. To address these issues, this study developed a novel microbial particle carrier using NaHCO3-modified polyvinyl alcohol (PVA)/sodium alginate (SA) gel (NaHCO3-PVA/SA). This carrier exhibits several advantageous properties, including excellent mass transfer efficiency, favorable biocompatibility, convenient film formation, abundant biomass, and exceptional pollutant treatment capacity. The carrier was modified with 0.3% NaHCO3, 8.0% PVA, and 1.0% SA, resulting in a remarkable 3.4-fold increase in the average pore diameter and a 12.8% improvement in mass transfer efficiency. This carrier was utilized to immobilize the aerobic denitrifying bacterium Stutzerimonas stutzeri W-2 to enhance nitrogen removal (NaHCO3-PVA/SA@W-2), resulting in a NO3--N removal efficiency of 99.06%, which was 21.39% higher than that without modification. Compared with the non-immobilized W-2, the degradation efficiency was improved by 43.70%. After five reuses, the NO3--N and TN removal rates remained at 99% and 93.01%, respectively. These results provide a solid foundation for the industrial application of the modified carrier as an effective tool for nitrogen removal in large-scale wastewater treatment processes.

16.
Biodegradation ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619793

RESUMO

In order to explore the operation performance, kinetic characteristics and bacterial community of the short-cut nitrification and denitrification (SND) system, the SND system with pre-cultured short cut nitrification and denitrification sludge was established and operated under different ferrous ion (Fe (II)) conditions. Experimental results showed that the average NH4+-N removal efficiency (ARE) of SND system was 97.3% on Day 5 and maintained a high level of 94.9% ± 1.3% for a long operation period. When the influent Fe(II) concentration increased from 2.3 to 7.3 mg L-1, the sedimentation performance, sludge concentration and organic matter removal performance were improved. However, higher Fe(II) of 12.3 mg L-1 decreased the removal of nitrogen and CODCr with the relative abundance (RA) of Proteobacteria and Bacteroidetes decreased to 30.28% and 19.41%, respectively. Proteobacteria, Bacteroidetes and Firmicutes were the dominant phyla in SND system. Higher Fe(II) level of 12.3 mg L-1 increase the RA of denitrifying genus Trichococcus (33.93%), and the denitrifying genus Thauera and Tolumonas dominant at Fe(II) level of no more than 7.3 mg L-1.

17.
Water Res ; 255: 121535, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564890

RESUMO

The fluctuating characteristics of rural sewage flow pose a significant challenge for wastewater treatment plants, leading to poor effluent quality. This study establishes a novel adaptive activated sludge (AAS) process specifically designed to address this challenge. By dynamically adjusting to fluctuating water flow in situ, the AAS maintains system stability and promotes efficient pollutant removal. The core strategy of AAS leverages the inherent dissolved oxygen (DO) variations caused by flow fluctuations to establish an alternating anoxic-aerobic environment within the system. This alternating operation mode fosters the growth of aerobic denitrifiers, enabling the simultaneous nitrification and denitrification (SND) process. Over a 284-day operational period, the AAS achieved consistently high removal efficiencies, reaching 94 % for COD and 62.8 % for TN. Metagenomics sequencing revealed HN-AD bacteria as the dominant population, with the characteristic nap gene exhibiting a high relative abundance of 0.008 %, 0.010 %, 0.014 %, and 0.015 % in the anaerobic, anoxic, dynamic, and oxic zones, respectively. Overall, the AAS process demonstrates efficient pollutant removal and low-carbon treatment of rural sewage by transforming the disadvantage of flow fluctuation into an advantage for robust DO regulation. Thus, AAS offers a promising model for SND in rural sewage treatment.

18.
Chemosphere ; : 142042, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621490

RESUMO

The presence of dissolved organic nitrogen (DON) in stormwater treatment processes is a continuous challenge because of the intertwined nature of its decomposition, bioavailability, and biodegradability and its unclear molecular characteristics. In this paper, 21 tesla Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in combination with quantitative polymerase chain reaction was applied to elucidate the molecular change of DON and microbial population dynamics in a field-scale water filtration system filled with two specialty adsorbents for comparison in South Florida where the dry and wet seasons are distinctive annually. The adsorbents included CPS (clay-perlite and sand sorption media) and ZIPGEM (zero-valent iron and perlite-based green environmental media). Our study revealed that seasonal effects can significantly influence the dynamic characteristics and biodegradability of DON. The microbial population density in the filter beds indicated that three microbial species in the nitrogen cycle were particularly thrived for denitrification, dissimilatory nitrate reduction to ammonium, and anaerobic ammonium oxidation via competition and commensalism relationships during the wet season. Also, there was a decrease in the compositional complexity and molecular weight of the DON groups (CnHmOpN1, CnHmOpN2, CnHmOpN3, and CnHmOpN4), revealed by the 21 tesla FT-ICR MS bioassay, driven by a microbial population quantified by polymerase chain reaction from the dry to the wet season. These findings indirectly corroborate the assumption that the metabolism of microorganisms is much more vigorous in the wet season. The results affirm that the sustainable materials (CPS and ZIPGEM) can sustain nitrogen removal intermittently by providing a suitable living environment in which the metabolism of microbial species can be cultivated and enhanced to facilitate physico-chemical nitrogen removal across the two types of green sorption media.

19.
Water Sci Technol ; 89(6): 1454-1465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557711

RESUMO

We used bench-scale tests and mathematical modeling to explore chemical oxygen demand (COD) removal rates in a moving-bed biofilm reactor (MBBR) for winery wastewater treatment, using either urea or nitrate as a nitrogen source. With urea addition, the COD removal fluxes ranged from 34 to 45 gCOD/m2-d. However, when nitrate was added, fluxes increased up to 65 gCOD/m2-d, twice the amount reported for aerobic biofilms for winery wastewater treatment. A one-dimensional biofilm model, calibrated with data from respirometric tests, accurately captured the experimental results. Both experimental and modelling results suggest that nitrate significantly increased MBBR capacity by stimulating COD oxidation in the deeper, oxygen-limited regions of the biofilm. Our research suggests that the addition of nitrate, or other energetic and broadly used electron acceptors, may provide a cost-effective means of covering peak COD loads in biofilm processes for winery or another industrial wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Nitratos , Biofilmes , Reatores Biológicos , Compostos Orgânicos , Purificação da Água/métodos , Nitrogênio , Ureia , Desnitrificação
20.
J Environ Manage ; 358: 120826, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608579

RESUMO

Hydroxylamine can disrupt the protein translation process of most reported nitrogen-converting bacteria, and thus hinder the reproduction of bacteria and nitrogen conversion capacity. However, the effect of hydroxylamine on the denitrification ability of strain EN-F2 is unclear. In this study, the cell growth, aerobic denitrification ability, and nitrous oxide (N2O) emission by Pseudomonas taiwanensis were carefully investigated by addition of hydroxylamine at different concentrations. The results demonstrated that the rates of nitrate and nitrite reduction were enhanced by 2.51 and 2.78 mg/L/h after the addition of 8.0 and 12.0 mg/L hydroxylamine, respectively. The N2O production from nitrate and nitrite reaction systems were strongly promoted by 4.39 and 8.62 mg/L, respectively, through the simultaneous acceleration of cell growth and both of nitrite and nitrate reduction. Additionally, the enzymatic activities of nitrate reductase and nitrite reductase climbed from 0.13 and 0.01 to 0.22 and 0.04 U/mg protein when hydroxylamine concentration increased from 0 to 6.0 and 12.0 mg/L. This may be the main mechanism for controlling the observed higher denitrification rate and N2O release. Overall, hydroxylamine supplementation supported the EN-F2 strain cell growth, denitrification and N2O emission rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...